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• Wir betrachten eine Parameterdifferenz 𝜇! − 𝜇", die der Mittelwertsdifferenz einer 
stetigen Variable in zwei Populationen entspricht.

• Frage: Ab wann können wir sagen, dass es sich bei dieser Parameterdifferenz um eine 
große bzw. „bedeutende“ Differenz handelt?

• Mehrere Probleme bei der Beantwortung dieser Frage:

• Sie hängt von der Einheit der interessierenden Variable ab: Eine Differenz von 10 
cm wäre geringer als eine Differenz von 10 km. Problem: Viele psychologische 
Variablen haben keine direkt interpretierbare Einheit: Was bedeutet z.B. eine 
Mittelwertsdifferenz von 10 in einem Konzentrationstest?

• Auch falls die Einheit interpretierbar ist, hängt die Beurteilung der Größe der 
Differenz vom Kontext ab: Eine Mittelwertsdifferenz von einer Sekunde zwischen 
zwei Gruppen im 100m Lauf würde einem größeren Unterschied entsprechen als 
eine Mittelwertsdifferenz von einer Sekunde zwischen zwei Gruppen im 20000m 
Lauf.

Motivation
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• Wir benötigen also eine neue Maßzahl für die „Bedeutsamkeit“ eines Parameterwerts 
oder einer Parameterdifferenz.

• Hierfür verwenden wir sogenannte Effektstärken.

• (grobe) Allgemeine Definition: Eine Effektstärke ist ein Parameter, der 
einheitsunabhängig ist und als Maß für die Größe eines Parameters, eines Unterschieds 
oder die Stärke eines Zusammenhangs interpretiert werden kann.

• Synonyme: Effektgröße, Effekt.

Effektstärken
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• Wie könnte eine Effektgröße im Fall einer 
Parameterdifferenz 𝜇! − 𝜇" aussehen?

• Zunächst sollte eine Effektgröße in 
diesem Fall die zwei nebenstehenden 
Situationen unterscheiden können:

• In den Situationen ist die 
Parameterdifferenz 𝜇! − 𝜇" identisch. In 
Bild (b) haben aber fast alle Personen 
aus der Population 2 (rote Dichte) einen 
höheren Variablenwert als fast alle 
Personen aus der Population 1 
(schwarze Dichte), während es in Bild (a) 
mehr Überschneidung gibt. In der 
Situation (b) sollte die Effektstärke also 
sinnvollerweise einen größeren Wert 
annehmen.

Vorüberlegungen I
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• Eine Effektstärke für die Größe einer Parameterdifferenz sollte also bei gleicher 
Differenz 𝜇! − 𝜇" umso größer sein, je kleiner die Streuung der interessierenden 
Variable innerhalb der beiden Populationen ist.

• Welcher Parameter quantifiziert die Streuung innerhalb der Populationen (bei 
unabhängigen Stichproben)? → 𝝈𝟐

• Wir fordern also, dass eine Effektstärke bei gleicher Differenz 𝜇! − 𝜇" umso größer sein 
sollte, je kleiner 𝜎" ist.

Vorüberlegungen II
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• Diese Überlegungen liegen der Definition der Effektstärke Cohen‘s 𝜹 zugrunde.

• Diese ist für unabhängige Stichproben als

𝛿 =
𝜇! − 𝜇"

𝜎"

und für abhängige Stichproben als

𝛿 =
𝜇! − 𝜇"

𝜎$%&&"

definiert.

• Bemerkung: Bei abhängigen Stichproben entspricht 𝜎$%&&"  nicht genau der empirischen 
Varianz innerhalb der beiden Populationen, hängt aber mit dieser zusammen.

Cohen‘s 𝛿 I



Lehrstuhl für Psychologische 
Methodenlehre und Diagnostik

der Ludwig-Maximilians-
Universität München

Vorlesung 
Statistische 
Methoden I
WS 25/26

# 8

• Wichtige Eigenschaften von Cohen‘s 𝛿:

• Cohen‘s 𝛿 ist bei gleicher Parameterdifferenz 𝜇! − 𝜇" umso größer, je kleiner die 
Varianz 𝜎" bzw. 𝜎$%&&"  ist.

• Cohen‘s 𝛿 ist unabhängig von der Einheit der interessierenden Variable: Falls wir 
die Einheit der Variable ändern, ändert sich Cohen‘s 𝛿 nicht.

• Cohen‘s 𝛿 hat selbst zwar keine Einheit, trotzdem kann man für die Interpretation 
sagen, dass es eine Parameterdifferenz „in Standardabweichungen“ angibt. Ist 
beispielsweise im unabhängigen Fall die Parameterdifferenz genau so groß wie 
𝜎", dann ist 𝛿 = 1. Ist die Differenz dagegen nur halb so groß wie die 

Standardabweichung 𝜎", wird 𝛿 = 0.5, etc..

• Cohen‘s 𝛿 ist negativ, falls 𝜇! − 𝜇" negativ ist, und positiv, falls 𝜇! − 𝜇" positiv ist. 
Für die Beurteilung der Größe der Parameterdifferenz ist daher nur der Betrag 𝛿  
relevant. Das Vorzeichen liefert aber Informationen über die Richtung der 
Parameterdifferenz.

Cohen‘s 𝛿 II
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• Daumenregel für die Interpretation von 𝛿 nach Cohen (1988):

• Daumenregeln in der Praxis kritisch hinterfragen!
• Effektstärken sollten immer mit Bezug auf die inhaltliche Fragestellung interpretiert 

werden (was ist im konkreten Kontext ein bedeutsamer Effekt?)

Daumenregeln nach Cohen

𝛿 0.2 0.5 0.8

Interpretation kleiner 
Effekt

mittlerer 
Effekt

großer 
Effekt
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• Um erwartungstreue und konsistente Schätzfunktionen für 𝛿 in abhängigen und 
unabhängigen Stichproben zu erhalten, ersetzen wir einfach alle unbekannten Größen 
in

𝛿 =
𝜇! − 𝜇"

𝜎"

bzw.

𝛿 =
𝜇! − 𝜇"

𝜎$%&&"

durch die jeweiligen Schätzfunktionen (siehe VL 9).

• Bemerkung: Der Schätzwert -𝛿'()* für 𝛿 wird in der Literatur oft auch Cohen‘s 𝑑 
genannt.

Punktschätzung
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• In unabhängigen Stichproben ergibt sich also als Schätzfunktion

-𝛿 =
/𝜇! − /𝜇"

/𝜎"
=
0𝑋! − 0𝑋"

𝑆+,,-"

und somit als Schätzwert

-𝛿'()* =
𝑥̅! − 𝑥̅"

𝑠+,,-"

Punktschätzung in 
unabhängigen Stichproben
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• In abhängigen Stichproben ergibt sich als Schätzfunktion

-𝛿 =
/𝜇! − /𝜇"

/𝜎$%&&"
=
0𝑋! − 0𝑋"

𝑆$%&&"

und somit als Schätzwert

-𝛿'()* =
𝑥̅! − 𝑥̅"

𝑠$%&&"

Punktschätzung in 
abhängigen Stichproben
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• Beispiel: Uns interessiert der Unterschied zwischen Depressiven und Nicht-Depressiven 
in der durchschnittlichen Konzentrationsleistung. Wir setzen voraus, dass das 
Histogramm der durch einen psychologischen Test erfassten Konzentrationsleistung in 
beiden Populationen durch die Dichte einer Normalverteilung approximiert werden kann.

• Wir ziehen zwei unabhängige einfache Zufallsstichproben:

• Stichprobe 1 aus der Population der Depressiven mit Umfang 𝑛! = 101.

• Stichprobe 2 aus der Population der Nicht-Depressiven 𝑛" = 51.

• Als Mittelwerte in den Stichproben ergeben sich 𝑥̅! = 165 und 𝑥̅" = 170

• Als Schätzwert für 𝜎" ergibt sich 𝑠+,,-" = 87.33

• Damit ist der Schätzwert für 𝛿 

-𝛿'()* =
𝑥̅! − 𝑥̅"

𝑠+,,-"
=
165 − 170

87.33
= −0.54

Punktschätzung Beispiel
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# 16
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• Noch besser ist es, Konfidenzintervalle für 𝛿 zu berechnen.

• Dies ist in unabhängigen und abhängigen Stichproben möglich.

• Die Konstruktion ist mathematisch sehr aufwendig, weswegen wir sie nicht besprechen 
werden.

• Die praktische Berechnung in R ist jedoch sehr leicht.

• Bemerkung: Die Voraussetzungen dafür, dass das Konfidenzintervall für 𝛿 das 
gewünschte Konfidenzniveau aufweist, sind identisch wie bei den jeweiligen 
Konfidenzintervallen für 𝜇! − 𝜇".

Konfidenzintervalle für 𝛿 I
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• Beispiel Folie 15: Unterschied zwischen Depressiven und Nicht-Depressiven in der 
durchschnittlichen Konzentrationsleistung.

• Als Schätzwert für 𝛿 hatte sich -𝛿'()* = −0.54 ergeben.

• Wir wollen nun ein 0.95-Konfidenzintervall für 𝛿 berechnen.

• Um das Konfidenzintervall in R zu berechnen, benötigen wir zudem die beiden 
Stichprobengrößen: 𝑛! = 101 und 𝑛" = 51.

Konfidenzintervalle für 𝛿 II



Lehrstuhl für Psychologische 
Methodenlehre und Diagnostik

der Ludwig-Maximilians-
Universität München

Vorlesung 
Statistische 
Methoden I
WS 25/26

# 19

• Berechnung in R (MBESS Paket):

> ci.smd(smd = -0.54, n.1 = 101, n.2 = 51)

$Lower.Conf.Limit.smd
[1] -0.8813043

$smd
[1] -0.54

$Upper.Conf.Limit.smd
[1] -0.1969517

• Das 95%-Konfidenzintervall für 𝛿 ist −0.88, −0.20 . Die plausiblen Werte für 𝛿, die 
standardisierte Mittelwertsdifferenz in der Konzentrationsleistung, liegen zwischen -0.88 
und -0.2 Standardabweichungen. Dies schließt sowohl kleine, mittlere, als auch große 
Effekte ein. Wollen wir die Größe anhand der Daumenregeln beurteilen, können wir also 
auf Basis der Daten keine präzise Aussage treffen, da sowohl ein kleiner, ein mittlerer, 
als auch ein großer Effekt plausibel ist. Wir können aber aufgrund des negativen 
Vorzeichens aller Werte im KI (d.h. nur negative Werte sind plausibel) davon ausgehen, 
dass Depressive eine geringere Konzentrationsleistung als Nicht-Depressive aufweisen.

Konfidenzintervalle für 𝛿 III
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• Neben der unter Umständen besseren Interpretierbarkeit von 𝛿 im Vergleich zur 
einfachen Parameterdifferenz 𝜇! − 𝜇" gibt es aus statistischer Sicht noch einen weiteren 
Grund für die Verwendung von 𝛿:

• Im Fall eines Konfidenzintervalls für 𝛿 können wir nämlich vor der Datenerhebung eine 
Stichprobengröße 𝑛 berechnen, so dass das zufällige Konfidenzintervall eine 
bestimmte, von uns vorgegebene erwartete Länge aufweist.

• Wir können also vorgeben, wie präzise unsere Intervallschätzung für 𝛿 sein soll und 
dann bestimmen, wie groß unsere Stichprobe sein muss, damit diese Vorgabe erfüllt ist.

• Eine Stichprobe dieser Größe erheben wir dann und berechnen in dieser das konkrete 
Konfidenzintervall.

• Dies ist für Konfidenzintervalle für 𝜇! − 𝜇" nicht möglich (bzw. nur mit weiteren 
unrealistischen Annahmen).

Stichprobenplanung 
für Konfidenzintervalle I
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• Mathematisch ist die Berechnung von 𝑛 noch aufwendiger als die Konstruktion des 
Konfidenzintervalls selbst.

• Wir beschränken uns daher wieder auf die Anwendung.

• Praktisches Problem: Obwohl uns bei der Stichprobenplanung primär die Präzision und 
damit die Länge des zufälligen Konfidenzintervalls interessiert, müssen wir eine 
Schätzung für 𝛿 selbst angeben um die benötigte Stichprobengröße 𝑛 berechnen zu 
können.

• Woher sollen wir diese nehmen?

Stichprobenplanung 
für Konfidenzintervalle II
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• Wir könnten z.B. als Daumenregel einfach einen mittleren Effekt, also 𝛿 = 0.5 
verwenden.

• Ein sinnvolles Vorgehen wäre auch, die Stichprobenplanung einfach für mehrere Werte 
von 𝛿 durchzuführen, um zu sehen, ob sich die benötigten Stichprobengrößen 
überhaupt stark unterscheiden. Oft sind die Unterschiede nicht besonders groß.

• Man kann zeigen, dass die erwartete Länge des zufälligen Konfidenzintervalls umso 
größer wird, je größer das wahre 𝛿 ist (das ist zugegebenermaßen nicht intuitiv). Eine 
konservative Methode wäre also, ein möglichst großes 𝛿 vorzugeben, z.B. 𝛿 = 1. Dann 
kann man relativ sicher sein, dass das zufällige Konfidenzintervall höchstens die 
gewünschte erwartete Länge aufweist.

• Bemerkung: Die Stichprobenplanung legt die erwartete Länge des zufälligen 
Konfidenzintervalls fest, falls das für die Berechnung angenommene 𝛿 gilt. Die 
tatsächliche Länge eines konkreten Konfidenzintervalls, kann trotzdem von der 
erwarteten Länge abweichen.

Stichprobenplanung 
für Konfidenzintervalle III
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• Beispiel: Wir wollen ein 0.95-Konfidenzintervall für 𝛿 berechnen und möchten, dass die 
erwartete Länge des Konfidenzintervalls klein genug ist, damit wir einen kleinen von 
einem mittleren Effekt unterscheiden können.

• Die erwartete Länge des Konfidenzintervalls sollte also 0.29 betragen, da in diesem Fall 
die Grenzen des erwarteten Konfidenzintervalls nicht gleichzeitig die beiden Grenzen 
0.2 (kleiner Effekt) und 0.5 (mittlerer Effekt) überdecken können.

• Wir geben für die Berechnung der benötigten Stichprobengröße einen mittleren Effekt 
von 𝛿 = 0.5 vor.

• Berechnung in R:

 > ss.aipe.smd(0.5, conf.level = 0.95, width = 0.29)
 [1] 377

• Der ausgegebene Wert 377 entspricht der benötigten Stichprobengröße pro 
Stichprobe. Wir müssen also insgesamt mindestens 377 + 377 = 754 Personen 
erheben.

Stichprobenplanung 
für Konfidenzintervalle IV
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• Zur Erinnerung: Die Power 1 − β ist neben dem Signifikanzniveau 𝛼 eines der beiden 
Gütekriterien eines statistischen Hypothesentests.

• Sie ist die Wahrscheinlichkeit dafür, dass wir uns für die 𝐻! entscheiden, falls diese 
tatsächlich wahr ist.

• Wie wir wissen, entscheiden wir uns im Rahmen eines statistischen Hypothesentests 
genau dann für die 𝐻!, falls die Realisation der Teststatistik im kritischen Bereich liegt.

• Die Power eines statistischen Tests ist also die Wahrscheinlichkeit dafür, dass sich die 
Teststatistik im kritischen Bereich realisiert, falls die 𝐻! gilt.

• Problem: In allen Fällen, die wir besprochen haben, sind unter der 𝐻! unendlich viele 
Parameterwerte möglich. Zur Bestimmung einer Wahrscheinlichkeit brauchen wir aber 
immer eine ganz konkrete Wahrscheinlichkeitsverteilung. 

• Im Fall von 𝐻!: 𝜇 > 𝜇. sind unter der 𝐻! z.B. alle Parameterwerte größer als 𝜇. möglich.

• Das heißt: Wir können die Power eines statistischen Tests immer nur für einen 
bestimmten festgelegten Parameterwert unter der 𝐻! bestimmen.

Power I
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• Für diesen bestimmten Parameterwert ist die Power zudem nur bestimmbar, falls wir die 
Wahrscheinlichkeitsverteilung der Teststatistik unter der Voraussetzung bestimmen 
können, dass dieser angenommene Parameterwert der wahre Parameterwert ist.

• Wie wir diese Wahrscheinlichkeitsverteilung bestimmen, unterscheidet sich je nach 
statistischem Hypothesentest.

Power II
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• Wir betrachten zunächst die Binomialtests.

• Hier ist die Teststatistik eine Summe von Bernoulli-Variablen:

𝑇 =E
%/!

0

𝑋%

• Wir wissen, dass diese Teststatistik unter der Voraussetzung 𝜋 = 𝜋. (also unter der 𝐻. 
bzw. dem extremsten Wert unter der 𝐻.) einer Binomialverteilung mit Parametern 𝑛 und 
𝜋. folgt. Auf der Basis dieser Verteilung können wir den kritischen Bereich für ein 
vorgegebenes Signifikanzniveau 𝛼 bestimmen.

• Sei nun 𝜋!	ein bestimmter Parameterwert unter der 𝐻!.

• Unter der Voraussetzung 𝜋 = 𝜋! ist die Teststatistik ebenfalls binomialverteilt, und zwar 
mit Parametern 𝑛 und 𝜋!.

• Wir können also für einen vorher auf der Basis von 𝜋. bestimmten kritischen Bereich 𝐾1 
für jeden Parameterwert 𝜋! unter der 𝐻! die Wahrscheinlichkeit 𝑃 𝑇 ∈ 𝐾1 ,
also die Power, berechnen.

Binomialtests I
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• Beispiel:
𝐻.: 𝜋 ≤ 0.5	; 	𝐻!: 𝜋 > 0.5

• Kritischer Bereich für 𝜋 = 𝜋. = 0.5	bei 
einem bestimmten 𝛼 und 𝑛 = 10:

𝐾1 = 8, 9, 10

• Falls nun aber die spezifische 𝐻! mit
𝜋 = 𝜋! = 0.8 gilt, wie groß ist die 
Wahrscheinlichkeit, dass 𝑇 ∈ 𝐾1 und ich 
mich auch für die 𝐻! entscheide?

• 𝑃 𝑇 ∈ 𝐾1 = 𝑃 𝑇 > 7 = 1 − 𝑃 𝑇 ≤ 7 =
1 − 𝐹 7

wobei jetzt 𝑃 eine Binomialverteilung mit 
Parametern 𝑛 = 10 und 𝝅 = 𝟎. 𝟖 ist und 𝐹 
deren Verteilungsfunktion.

Binomialtests II
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• Berechnung in R:

> 1 - pbinom(7, 10, 0.8)
[1] 0.6777995

• Für den konkreten Parameterwert 𝜋! =
0.8 unter der 𝐻!: 𝜋 > 0.5 wäre also die 
Wahrscheinlichkeit, dass die Teststatistik 
in den vorher berechneten kritischen 
Bereich fällt also 0.68 (= Power des 
Hypothesentests).

• Warum wählen wir genau 𝜋! = 0.8? Das 
ist eine inhaltliche Frage!

Binomialtests III
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• Im Fall der t-Tests ist die Berechnung der Power etwas schwieriger.

• Hier hängt die Wahrscheinlichkeitsverteilung der Teststatistik für bestimmte 
Parameterwerte unter der 𝐻! auch wieder von dem unbekannten Parameter 𝜎" ab.

• Wir können jedoch die Wahrscheinlichkeitsverteilung der Teststatistik für bestimmte 
Effektstärken unter der 𝐻!	bestimmen. Diese Effektstärken 𝛿2! sind für die 
verschiedenen t-Tests unterschiedlich definiert:

• Bemerkung: Für den (sehr häufigen) Fall 𝜇. = 0 hat 𝛿2! die gleiche Form wie 𝛿.

t-Tests I

Eine Stichprobe: Zwei unabhängige Stichproben Zwei abhängige Stichproben

𝛿!! =
𝜇!! − 𝜇"

𝜎# 𝛿!! 	=
(𝜇$!!−𝜇#!!) − 𝜇"

𝜎#
𝛿!! 	=

(𝜇$!!−𝜇#!!) − 𝜇"

𝜎%&''#
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• 𝛿2! drückt aus, um wieviel der angenommene Effekt unter der 𝐻! (hier: 𝛿!) größer ist als 
das (extremste) angenommene Effekt unter der 𝐻. (hier: 𝛿.).

• 𝛿2! ist also eigentlich eine Differenz zwischen zwei 𝛿s.

• Veranschaulichung am Beispiel für zwei unabhängige Stichproben:

𝛿2! 	=
(𝜇!2!−𝜇"2!) − 𝜇.

𝜎"
=
𝜇!2! − 𝜇"2!

𝜎"
−

𝜇.
𝜎"

=
𝜇!2! − 𝜇"2!

𝜎"
−
𝜇!2" − 𝜇"2"

𝜎"
= 𝛿! − 𝛿.

• Im häufigen Fall 𝜇. = 0 gilt 𝛿. = 0 und 𝛿2! entspricht 𝛿!.

• In der Praxis kennen wir 𝜎" nicht. Um 𝛿2! konkret zu berechnen, wäre also nicht nur 
eine Annahme über 𝜇!2! − 𝜇"2!, sondern auch eine Annahme über 𝜎" notwendig. 
Daher wird in der Praxis meistens (ohne Nebenrechnung) direkt ein Wert für 𝛿2! 
festgelegt.

• Zum Beispiel man verwendet 𝛿2! = 0.1, was bedeutet: 
„Ich nehme an, dass der wahre Effekt 𝛿 um 0.1 Standardabweichungen größer ist, als 
(der extremste Effekt) unter der 𝐻..“

Interpretation von 𝛿)! I
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• Ein ausführlicheres Beispiel für den t-test für zwei unabhängige Stichproben mit zwei 
verschiedenen gerichteten Hypothesenpaaren:
• Fall 1:  𝐻.: 𝜇! − 𝜇" ≤ 0, 𝐻!: 𝜇! − 𝜇" > 0
• Fall 2:  𝐻.: 𝜇! − 𝜇" ≤ 1, 𝐻!: 𝜇! − 𝜇" > 1

• Wir nehmen an, dass 𝜎" = 10 (in der Praxis Schätzwert notwendig). Wir wollen 𝛿2! 

berechnen unter der Annahme, dass 𝜇!2! − 𝜇"2! = 3, d.h. 𝛿! =
3!#!43$#!

5$
= 6

!.
= 0.3:

• Fall 1: 𝛿2! 	=
(3!#!43$#!)43"

5$
= 64.

!.
= 0.3

Verwenden wir für die Berechnung der Power des Hypothesentests in Fall 1 also
𝛿2! = 0.3, nehmen wir an, dass der wahre Effekt 𝛿 um 0.3 Standardabweichungen 

größer ist als das extremste 𝛿, für das noch die 𝐻. gilt (hier: 𝛿. =
3!#"43$#"

5$
= .

!.
= 0).

• Fall 2: 𝛿2! 	=
(3!#!43$#!)43"

5$
= 64!

!.
= 0.2

Verwenden wir für die Berechnung der Power des Hypothesentests in Fall 2 also
𝛿2! = 0.2, nehmen wir an, dass der wahre Effekt 𝛿 um 0.2 Standardabweichungen 

größer ist als das extremste 𝛿, für das noch die 𝐻. gilt (hier: 𝛿. =
3!#"43$#"

5$
= .

!.
= 0).

Interpretation von 𝛿)! II
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• Zusammenfassung: Um die Power eines t-Tests bestimmen zu können, müssen wir 
eine Effektstärke 𝛿2! festlegen, die ausdrückt, wie stark sich der angenommene Effekt 
unter der 𝐻! von der 𝐻. unterscheidet.

• Für eine gegebene Effektstärke 𝛿2! folgt die Teststatistik in allen t-Tests einer 
sogenannten nonzentralen t-Verteilung. 

• Bemerkung: „nonzentral“ bezieht sich hier vereinfacht gesagt darauf, dass die Verteilung 
u.a. im Vergleich zur Verteilung der Teststatistik unter Annahme der 𝐻. verschoben ist.

• Die genaue Form dieser Verteilung und ihre Parameter werden wir nicht besprechen (in 
den folgenden Graphiken ist die nonzentralen t-Verteilung immer in blau dargestellt).

• Wichtig ist, dass wir auf ihrer Basis für jeden kritischen Bereich 𝐾1 und jede Effektstärke 
𝛿2! die Wahrscheinlichkeit 𝑃 𝑇 ∈ 𝐾1 , also die Power, in R berechnen können.

t-Tests II
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• Graphische Veranschaulichung für einen 
Einstichproben t-Test mit rechtsseitiger 
Alternativhypothese.

• (a): Dichte der Teststatistik unter der 
Voraussetzung, dass 𝜇 = 𝜇., also unter 
der extremsten 𝐻.

• (b): Dichte der Teststatistik unter der 
Voraussetzung, dass 𝛿2! der wahre 
Effekt ist, also unter einem spezifischen 
Parameterwert unter der 𝐻! 

t-Tests III
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• Beispiel: Zweistichproben t-Test für unabhängige Stichproben mit
𝐻.: 𝜇! − 𝜇" ≤ 0
𝐻!: 𝜇! − 𝜇" > 0

• Wir haben ein Signifikanzniveau von 𝛼 = 0.005 gewählt und zwei Stichproben mit
𝑛! = 𝑛" = 100 erhoben.

• Falls die 𝐻! wahr wäre und ein kleiner Effekt 𝛿2! = 0.2 vorliegen würde, wäre die Power 
(pwr Paket):
> pwr.t.test(n = 100, d = 0.2, sig.level = 0.005, type = 'two.sample‘, 
             alternative = 'greater‘)

  Two-sample t test power calculation

       n = 100
       d = 0.2
   sig.level = 0.005
     power = 0.1203114
  alternative = greater

Die Power unseres Hypothesentests wäre in diesem Fall also gleich 0.12 und somit 
sehr niedrig. Unser Hypothesentest wäre sehr schlecht.

t-Tests IV
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• Die Power eines statistischen Hypothesentests hängt von folgenden Größen ab:

• dem Signifikanzniveau 𝛼,

• der Stichprobengröße,

• im Fall der Binomialtests von der Differenz 𝜋2! − 𝜋. , also zwischen dem wahren 
Parameterwert 𝜋2! und dem (extremsten) Parameterwert 𝜋. unter der 𝐻.;
im Fall der t-Tests von der Effektstärke 𝛿2!.

• Bemerkung: Sowohl 𝜋2! − 𝜋. als auch 𝛿2! werden wir im Folgenden als 
„wahren Effekt“ bezeichnen.

Einflussgrößen der Power
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• Je größer das Signifikanzniveau 𝛼, desto größer die Power.

• Graphische Veranschaulichung für einen rechtsgerichteten Einstichproben t-Test:

Power und Signifikanzniveau
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• Je größer die Stichprobengröße, desto größer die Power.

• Graphische Veranschaulichung für einen rechtsgerichteten Einstichproben t-Test:

Power und Stichprobengröße 
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• Je größer der wahre Effekt, desto größer die Power.

• Graphische Veranschaulichung für einen rechtsgerichteten Einstichproben t-Test:

Power und wahre Effektgröße
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• Je größer das Signifikanzniveau 𝛼, desto größer die Power.

• Je größer die Stichprobengröße, desto größer die Power.

• Je größer der wahre Effekt, desto größer die Power.

Zusammenfassung
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• Zur Erinnerung: Bei der konkreten Berechnung der Power müssen wir einen Effekt 
vorgeben.

• Die von uns unter dieser Voraussetzung berechnete Power entspricht nur dann der 
tatsächlichen Power des Hypothesentests, falls dieser Effekt dem wahren Effekt 
entspricht.

• Was der wahre Effekt ist, können wir natürlich nie wissen.

• Wir wissen aber: Je größer der wahre Effekt, desto größer die Power.

• Das heißt: Wenn der wahre Effekt größer ist als der von uns für die Berechnung 
gewählte Effekt, ist die tatsächliche Power größer als die von uns berechnete.

• Falls wir also eine konservative Abschätzung der Power haben wollen, sollten wir für die 
Berechnung einen kleinen Effekt z.B. 𝜋2! − 𝜋. = 0.1 oder 𝛿2! = 0.2 wählen.

• Falls die mit diesem Effekt berechnete Power hoch ist, können wir davon ausgehen, 
dass die tatsächliche Power für alle größeren Effekte mindestens genauso hoch ist.

Wahl des Effekts unter der 𝐻! bei der 
Berechnung der Power 
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• Aber warum ein kleines 𝛿2! annehmen, wenn sich in unserer Studie vielleicht ein viel 
größeres -𝛿'()* gezeigt hat?

• Wäre es nicht einfacher, das -𝛿'()* aus unserer Stichprobe zu nehmen und danach zu  
berechnen, was die Power für einen solchen Effekt gewesen wäre?

• Gerade wenn meine Stichprobe nur klein war, könnte ich doch so vielleicht zeigen, 
dass die Power für den beobachteten Effekt trotzdem ausreichend groß gewesen 
wäre?

• Vorsicht! Gerade dann, wenn ein solches Vorgehen gewählt wird, sobald ein 
Hypothesentest signifikant geworden ist, leitet eine solche nachträglich (post-hoc) 
berechnete Power in die Irre.

• Unabhängig davon, wie groß ein Effekt wirklich ist, müssen gerade bei kleinen 
Stichproben große Effekte beobachtet werden damit der Hypothesentest signifikant 
wird. Bei großen Stichproben reichen bereits kleine Effekte.

• Warum?

Post-hoc Power

# 43
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• Ausgangspunkt des Beispiels: 
𝐻.: 𝜇! − 𝜇" ≤ 0
𝐻!: 𝜇! − 𝜇" > 0

• 𝑛! = 𝑛" bei unabhängigen Stichproben.

• 𝛼 = 0.005

• 𝑡 = (:̅!4:̅$)43"

%&''(
$

)!
;
%&''(
$

)$

3"/. (𝑥̅!−𝑥̅") = 𝑡 "
0!

𝑠+,,-"

• -𝛿'()* =
:̅!4:̅$

<&''(
$

=
* $

)!
<&''(
$

<&''(
$

= 𝑡 "
0!

• Falls t = 𝑡=)%* wird der Test signifikant.

Exkurs:
Zusammenhang der Teststatistik mit "𝛿"#$% 

# 44



Lehrstuhl für Psychologische 
Methodenlehre und Diagnostik

der Ludwig-Maximilians-
Universität München

Vorlesung 
Statistische 
Methoden I
WS 25/26

• Falls tatsächlich die 𝐻! wahr ist und 
beispielsweise ein Effekt von 𝛿 = 0.2 
vorliegt, müssten wir diesen Effekt bei 
kleinen Stichproben überschätzen, um 
einen signifikanten Hypothesentest zu 
erhalten.

• Bei großen Stichproben reichen 
dagegen bereits kleinere 
Effektschätzungen aus, damit wir 
aufgrund eines signifikanten Tests die 𝐻! 
auch selbst für wahr halten.

• Verwenden wir bei kleinen Stichproben 
und einem signifikanten Hypothesentest 
-𝛿'()* für die Powerberechnung, 
überschätzen wir sehr wahrscheinlich 
die tatsächliche Power.

Warnung vor Post-hoc Power I

# 45
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• Beispiel: t-Test für zwei unabhängige Stichproben mit rechtsgerichteter 𝐻!

• Angenommen der wahre Effekt in der Population beträgt 𝛿 = 0.2

• Erhebung von zwei kleinen Stichproben mit 𝑛! = 𝑛" = 10

• Verwendung eines üblichen Signifikanzniveaus von 𝛼 = 0.05

• Es wird ein Effekt von -𝛿'()* = 1 beobachtet
Bemerkung: 𝑃 -𝛿 ≥ 1 ≈ 0.05, falls 𝛿 = 0.2 und 𝑛! = 𝑛" = 10

• Der Hypothesentest liefert ein signifikantes Ergebnis (bei 𝛼	 = 	0.05) mit 𝑝 = 0.019

• Berechnung der Post hoc Power ergibt:

> pwr.t.test(d = 1, sig.level = 0.05, n = 10, type = 'two.sample', 
+            alternative = 'greater')

     Two-sample t test power calculation 

              n = 10
              d = 1
      sig.level = 0.05
          power = 0.6935575
    alternative = greater

NOTE: n is number in *each* group

Warnung vor Post-hoc Power II
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• Die tatsächliche Power ist in diesem Fall allerdings:

> pwr.t.test(d = 0.2, sig.level = 0.05, n = 10, type = 'two.sample', 
+            alternative = 'greater')

     Two-sample t test power calculation 

              n = 10
              d = 0.2
      sig.level = 0.05
          power = 0.1123273
    alternative = greater

NOTE: n is number in *each* group

• Hätte man die Poweranalyse konservativ mit einem kleinen Effekt unter der 𝐻! von 
𝛿2! = 0.2 durchgeführt, hätte man erkannt, dass es sich hier um einen sehr schlechten 
Hypothesentest handelt, der das Gütekriterium einer hohen Power nicht erfüllt.

• Fazit des Beispiels: Die aufgrund der kleinen Stichprobe viel zu niedrige tatsächliche 
Power von 0.11 wird durch die angegebene Post hoc Power von 0.69 verschleiert.

Warnung vor Post hoc Power III
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Stichprobenplanung für 
Hypothesentests

# 48
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• Das Signifikanzniveau 𝛼 eines statistischen Tests können wir direkt durch die Wahl 
eines geeigneten kritischen Bereichs festlegen.

• Die Power 1 − 𝛽 eines statistischen Tests können wir nur indirekt durch die Größe 
unserer einfachen Zufallsstichprobe festlegen. 

• Sehr, sehr, sehr wichtig:

• Die Verwendung eines statistischen Hypothesentests ist nur dann sinnvoll, falls er 
sowohl ein geringes Signifikanzniveau als auch eine hohe Power aufweist.

• Der Fehler 1. Art ist nicht „wichtiger“ als der Fehler 2. Art. 
Ein statistischer Hypothesentest, der lediglich ein geringes Signifikanzniveau, 
aber keine hohe Power aufweist, ist kein guter Hypothesentest.

• Frage: Wie stellen wir sicher, dass die Power unseres Hypothesentests hoch ist?

Wdh.: Gütekriterien für statistische 
Hypothesentests
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• Zur Erinnerung:

• Je größer das Signifikanzniveau 𝛼, desto größer die Power.

• Je größer die Stichprobengröße, desto größer die Power.

• Je größer der wahre Effekt, desto größer die Power.

• Ein niedriges Signifikanzniveau ist genau wie eine hohe Power ein Gütekriterium von 
statistischen Hypothesentests. Dieses können wir also nicht einfach erhöhen, um eine 
hohe Power zu erhalten.

• Wie groß der wahre Effekt ist, falls die 𝐻! gilt, können wir nicht beeinflussen.

• Das einzige, was wir dafür tun können, dass unser Hypothesentest eine hohe Power 
aufweist, ist also, eine große Stichprobe zu erheben.

• Frage: Wie groß muss die Stichprobe sein, damit unser Hypothesentest eine von uns 
vorgegebene Power aufweist?

Konsequenzen für die Gütekriterien
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• Genau wie wir für ein gegebenes Signifikanzniveau, eine gegebene Stichprobengröße 
und einen wahren Effekt die Power eines statistischen Tests bestimmen können, 
können wir für ein gegebenes Signifikanzniveau, eine gegebene Power und einen 
gegebenen wahren Effekt die benötigte Stichprobengröße bestimmen.

• Die mathematische Herleitung hierfür ist sehr aufwendig.

• Wir beschränken uns daher wieder auf die praktische Anwendung mit R.

Stichprobenplanung I
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• Problem: Wie legen wir den Effekt unter der 𝐻! für die Stichprobenplanung fest? 

• Konservative Lösung: Wir wählen für die Berechnung der benötigten Stichprobengröße 
einen kleinen Effekt.

• Falls der Effekt unter der 𝐻! nämlich in Wahrheit größer ist, ist dies nicht so schlimm, da 
die Power des Hypothesentests für die berechnete Stichprobengröße dann mindestens 
so groß ist, wie die von uns vorgegebene Power.

• Wichtig: Im Gegensatz zur Stichprobenplanung für Konfidenzintervalle hat die Wahl 
des Effekts 𝛿2! 	bei Hypothesentests in vielen Fällen einen starken Einfluss auf die 
benötigte Stichprobengröße. Da sich die Stichprobenplanung bei Hypothesentests auf 
ein zentrales Gütekriterium (die Power) auswirkt, sollten wir also auf jeden Fall eine 
konservative Lösung wählen.

• Bemerkung: Die Wahl des Effekts unter der 𝐻! kann man sich im Sinne des kleinst-
möglichen Effekts vorstellen, der in der konkreten Anwendung praktisch relevant ist. 
„Falls der tatsächliche Effekt kleiner ist als mein festgelegter Mindesteffekt, 
dann ist es mir praktisch egal, wenn ich den Effekt mit meiner Studie nicht finde.“

Stichprobenplanung II
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• Wir hatten auf Folie 36 gesehen, dass für einen Zweistichproben t-Test für unabhängige 
Stichproben mit Signifikanzniveau 𝛼 = 0.005 und

𝐻.: 𝜇! − 𝜇" ≤ 0
𝐻!: 𝜇! − 𝜇" > 0

bei einem kleinen Effekt 𝛿2! = 0.2  zwei Stichproben mit einer Größe von jeweils 100 
zu klein waren, um eine hohe Power zu erhalten.

• Wie groß muss die Stichprobe also sein?

Beispiel I
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• Wir wollen, dass unser Hypothesentest mindestens eine Power von 0.8 aufweist.

• Berechnung der hierfür benötigten Stichprobengröße in R:

> pwr.t.test(d = 0.2, sig.level = 0.005, power = 0.8, type = 'two.sample‘,    
             alternative = 'greater')

  Two-sample t test power calculation

       n = 585.6093
       d = 0.2
   sig.level = 0.005
     power = 0.8
  alternative = greater

NOTE: n is number in *each* group

• Der ausgegebene Wert 585.61 entspricht der benötigten Stichprobengröße pro 
Stichprobe. Wir müssen also aufgerundet insgesamt mindestens 586 + 586 = 1172 
Personen erheben.

Beispiel II
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• Es besteht ein positiver (monoton steigender) Zusammenhang zwischen der 
Stichprobengröße und der Power (bei festem 𝛼	und Effekt 𝛿2!):

Beispiel III

n = 585.6093
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• Mit Effektstärken lassen sich Effekte unabhängig von Einheit und/oder Streuung eines 
Merkmals leichter interpretieren.

• Die Effektstärke Cohen‘s 𝛿 vereinfacht die Interpretation von Mittelwertsunterschieden 
und kann als Punkt- und Intervallschätzung aus Stichprobendaten geschätzt werden.

• Die Intervallschätzung von Cohen‘s 𝛿 erlaubt auch eine Stichprobenumfangsplanung 
für eine gewünschte erwartete Länge („Präzision“) der Schätzung.

• Die Power ist die Wahrscheinlichkeit dafür, dass wir uns für die 𝐻! entscheiden, falls 
diese tatsächlich wahr ist.

• Für konkrete Berechnungen der Power müssen konkrete Parameterwerte unter der 𝐻! 
angenommen werden, die aus theoretischen Überlegungen oder Vorstudien abgeleitet 
werden.

• Die Power wird größer, je größer der angenommene Effekt, das Signifikanzniveau 𝛼 
und/oder die Stichprobengröße ist.

• Um eine gewünschte Power bei gegebenem Signifikanzniveau und gegebenem Effekt 
zu erhalten, sollte eine Stichprobenumfangsplanung durchgeführt werden.

Zusammenfassung

# 56


